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Abstract. In this paper, we examine and present the development of a depth map acquisition system with real-time

characteristics based on a binocular active vision system. In order to obtain depth information we present a method

that combines stereo matching with mechanical activity, reducing the time spent to perform the correspondence

between the image points on the left and right images. Controlling the cameras' vergence or the baseline distance

it is possible to change continuously the �xation point in the space and, at the same time, to select points with

correspondent image projections. Computing the distance from those points to the vision system, is possible to obtain

a dense relative map of the scene. The correspondence is established based on similarity measures between image

regions. This measures are performed by operators with characteristics that makes this method suitable for parallel

implementation. Since the depth information is relative, the calibration of the active vision system is minimal.

1 Introduction

One of the very important tasks in computer vision is to extract depth information of the world. Stereoscopy

is a technique to extract depth information from two images of a scene taken from di�erent view points.

This information can be integrated on a single entity called dense depth map.

Dense depth maps are arrays with the distances from the object to the imaging system and the com-

putation of precise depth information is, in generally, a time consuming task. In this paper we propose an

algorithm to extract a relative dense depth map that has not requirements of a precise knowledge of the

stereo system settings (calibration precision)[2]. The information of these dense relative maps can be inte-

grated as a depth cue on higher level processes including object recognition, robot navigation or any other

task that requires a three-dimensional representation of the physical environment.

In vision research several methods had been used to extract information about the structure of the world

from video pictures obtained by active vision systems - some examples are [1], [6], [8], [9], [12].

A common way of approaching this is to use two stereo cameras in a similar fashion to the human visual

system (see �gure 1). A given point in the scene will, in general, project into two di�erent planes and the

information about its 3D position can be inferred from the vector between the two images. Depth recovering

algorithms are well documented in the literature (references with pointers to other references [11],[10], [7],

[9], [14],[15],[13]), nevertheless the algorithms included in our tests were selected for their potential robust

real-time operation and their moderate hard and software implementation cost.

The main di�culty encountered in practice is the so-called,correspondence problem, namely identifying

the same point in two images. Active vision simplify this problem by converging the cameras to a target of

interest so that disparity is zero at the center of �eld of view and minimum at peripherical zone. The task of

correspondence operators used to identify corresponding image point are less complex because they do not

need to perform search for high magnitudes of disparities.



Fig. 1.: (a)-Active vision system (b)-Experimental cameras setup
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Fig. 2.: Convergent cameras schematic geometry (top view and 3D view)

1.1 Vergence geometry

Consider two cameras horizontal displaced, sharing a common tilt angle and assuming a convergent con�g-

uration (see �gure 3). The vergence angle � subtended at the target P (�xation point) by the two camera

optical center, E

l

and E

r

(nodal points), can be inscribed on a circle through these three points. From plane

geometry the view rays to camera optical center from any point I (intersection point) on this circle subtend

the same angle. Thus, since the optical camera rays yield zero disparity, so do the images of all points on this

circle throughout the �eld of view. This special circle is known as the geometric horopter (Vieth-Muller circle

of zero disparity). Object at this locus in the environment will be in correspondence (same pixel address)

in two images. Two isodisparity circles with negative and positive disparity in term of angular di�erence

(smaller / larger radius than circle E

l

; E

r

; P ) are also marked.

Small disparities correspond to small deviation in depth from horopter. Such disparities can be measured

by simple local neighbourhood operators, to build up a dense surface map of environment near horopter

[8][16].

Coombs [4] characterises horopter as being the surface in three dimensional space de�ned by the points

that stimulates exactly corresponding points (i.e., that as zero stereo disparity) in two cameras.

If P = [X;Y; Z; 1]

T

is an arbitrary point in 3D space de�ned in homogeneous co-ordinates, then the

transformation of these world co-ordinates systems to a co-ordinate system aligned with camera E
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is the focal length).

The region of space that has the same vertical and horizontal positions in left and right camera is then

given by u

l

= u

r

and v

l

= v

r

. Regardless of the complexity of the geometry relating the two camera, possible

di�erences in focal length, and even possible misalignments, each of these contraints simpli�es if we consider

only vergence and a common tilt movements

The �xation point (X;Z) co-ordinates, for a CY CLOP C referential are expressed by equation ( 1):
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Fig. 3.: Geometric horopter
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) where Z is the perpendicular distance from the �xation point

to the baseline.

2 Description of the algorithm

The active vision systems used in our experiences (�gure 1) enables the control of the the cameras' vergence

or the distance between the cameras. Such features are used during the algorithm execution.

The set of view rays with origin on left and right cameras intersect in space and if we select the inter-

sections from view rays that have the same order in left and right cameras and verify the order constraint

we will obtain intersection points (see �gures 2 and 3), I1 = l1 \ r1; I2 = l2 \ r2; I3 = l3 \ r3;...). These

points have zero disparity and we can �lter those on the object's surface through similarity operators. The

match probability between the correspondent image points is high. Controlling the cameras' vergence or

the baseline distance we can sweep the space with this set of view rays and, at the same time, select the

intersection points that have the maximum correlation. If we record the position of these points (that are

related with the vergence angle or the baseline distance) we will obtain a dense depth map where the depth

distances are recorded as positions where the intersection point intersect the object' surface. The method

combines a software and a mechanical search to perform the correspondence between the image points on

the left and right images-see �gure 4. Verging the cameras from near parallel to several degrees of vergence,

sweeps the visual rays and the intersection points through the scene.

The intersection points that are in the the objects' surface present high value in a similaritymeasurement.

During the algorithm execution this output is continuously analyzed, for each corresponding image point

pair. The peaks of this one-dimensional signal, correspond to likely object depths and when associated with

the vergence angles, a three-dimensional map of depth is possible to obtain (see �gure 4). Each similarity

operator is implemented with operators that work independently and always on the same image point pair.

This fact makes the method fast and ideal for hardware parallel implementation, generating simultaneously

the similarity measurements for all image pairs.

The key problem on depth map building by stereo vision can be identi�ed as �nding the correct correspon-

dence of image projections, i.e. homologous image points that represent a single point in the physical scene.

There are not standard solution for the so-called correspondence problem, but the majority of approaches

used can be roughly classi�ed into two classes: correlation-based and feature-based methods.

The solution on this article belongs to the correlation-based techniques, which continuously comparing

areas in the left and right images. The algorithm uses a simpli�cation of the epipolar constraint because it

assumes that for a small vergence movement, any 3D point will be projected always in the same image row.

This assumption is also considered for small baseline movements. It also uses the continuity constraint and

assumes that the intensities at two corresponding pixels are approximately the same.



operator or zero
disparity operator
(x,y)

Highest correspondence
peak

Vergence angle or

Correspondence

sensor elements

baseline length

Correspondent

Stereo image planes
at K geometry

Object
surface

0

1

2

3

4

Fig.4.: Space being sweep and the similarity outputs

The important constraint in our approach consists on the application of similarity operators just to image

points that have same coordinates on both images. Using this constraint, that acts like a zero-disparity �lter

for convergent cameras, we ensure that the observed 3D point is on the horopter, i.e. it belongs to a curve

in space that has zero disparity (or at least the disparity is minimum), which is desirable because points or

features on such condition can be easily picked from the scene. This approach enables the separation of the

object of interest from surroundings and simplify the calculus.

Since we know which points match, the measurement of the disparity is trivial and to know the real

distance just requires the knowledge of the cameras' geometry.

During the execution, we perform the correlation over all image points and just store the best matches.

The accuracy of these measures is very important because all the algorithm depends of the certainty of

these matches. Similarity measures are computed by comparing a �xed window in the left image with a

corresponding window in the right image while the vergence or baseline movements are performed. For each

corresponding pair of pixel a curve of correlation scores is generated and the highest (or lowest depending

of the similarity operator) give us the best matching point.

We tested some similarity operators such as the sum of absolute di�erences (SAD) (2), normalized cross-

correlation operator (NCC) (3) and the zero mean normalized cross-correlation operator (ZNCC) (4)[3][5]

. L and R stands for the left and right gray level images, with a wxw search window and L and R are

the average gray level for the left and right image, respectively. Although the �rst operators have a low

computational cost the results with real images are not good enough. The best operator seems to be the

zero normalized cross-correlation operator but the computational cost is considerable. Experimentally this

operator presents the best results because it is most invariant to a�ne transformations of the images which

may result from slightly di�erent cameras' settings. In our case the gray level distribution between images

is slightly di�erent and the equalization performed by this operator is essential.
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2.1 Validating matches and the hierarchical algorithm
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Fig. 5.: Algorithm overview scheme

Validating matches presents a serious problem and in order to certify the corresponding points we are

using some speci�c constraints:

{ The temporal continuity of the correlation scores curve, i.e. for each correlation curve associated to a

corresponding pair of pixel's we analyze if the maximum(or minimum) values are consistent with the

earlier and posterior values. Abrupt peaks can be noise.

{ An uncertainty measure, based on the spatial matches distribution, i.e. we expect that the point with

the highest match is surrounded by high match probability points.

{ Multi-resolution coherence. Finally to increase the reliability we perform matching at several levels of

resolution (computed by sub-sampling original images or gaussian smoothed images) with equal size

windows (see �gure 5).

The matching computation proceeds independently at all levels of resolution and in the end the results

generated at low resolution are used to validate the results at higher levels. The method assumes that the

results generated at low resolution are more reliable, if less precise, than those generated at high resolutions.

For each image pair iteration, and at each level (a,b,c), we obtain a match probability map (i.e. a zero-

disparity map) and a depth map. These depth maps are continuously updated during the vergence or baseline

movements (each movement correspond to a few pixel shifts in the images rows). In the end, the low level

resolution depth maps are expanded to the original size and together with the original one we compute a

weighted average depth map (or simply reject those points where the peaks do not match). By the algorithm

description it is possible to see that several processes can be executed in parallel and to speeding up the

depth map acquisition process.

2.2 Experiments with Baseline Control

The software matching processes (correlations) are the time consuming tasks. The processing time is pro-

portional to the size window search. However similarity operators SAD (equation 2) and NCC (equation

3) can be implemented to avoid redundant multiplication using recursions over the indices. With these op-

erators it is possible to make the processing time independent of the window size but, as mentioned, the

result's precision are not as good as the ZNCC operator. We are using search windows with 21x21 pixels.

Smaller search windows can speedup the system, but the results are not so reliable (i.e. we miss the object

pattern). Because the method is iterative the result precision is also dependent on the number of image pair

acquisitions and on the range of each verging or baseline increments.



Figure 7.a shows a relative depth map of a big rotated box that, has, on top some other small boxes

at di�erent distance ranges. The big box is in front of the robot head around 215 cm from the baseline.

The map is represented in shades of gray, dark meaning close, white meaning far. Figure 7.b represents the

score curve correlation of a pixel with 100,128 coordinates. Figure 6 is one of the stereo image pair acquired

during the baseline movements. The illustrated experience was achieved with a symmetric �xation geometry

and changing the baseline distance with decrements of 1.5 mm (1.0823 cm in depth). We started with a

initial baseline distance of 29.01cm.

Fig. 6.: Stereo image pair
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Fig. 7.: (a)-Depth map of a box. (b)-Score curve (c)-3D Depth map

2.3 DSP implementation

The active vision system consists of a 5 d.o.f. (see �gure 1a) robotics platform with independent vergence,

baseline, pan and tilt axes. This robot head is controlled by one host computer (PC 486/66 MHz) and a

dual C40 Image Processing and frame-grabber PC board.

The image acquisition and processing is performed by a dual C40 image processing board from Transtech

Parallel Systems. One of the two DSP C40 is associated with a frame-grabber (TDM435) and is designated

as master while the other is called slave. The host computer communicates with the master C40 through

a FIFO memory channel allowing transfer rates of 2MBytes/sec. The transference between the two C40's

is performed through DMA controlled bi-directional comports allowing transfer rates of 40MBytes/sec even

while they are processing (see �gure 8). The frame-grabber can do acquisitions at a video rate frequency of

25Hz and it has multiple video entries, but just one at each time can be captured.

In order to implement the presented depth recovering algorithm in the Transtech image processing board

we use the master C40 to perform the matching process between the left and right images at the original

resolution (256x256) and their respectively �ltering. At the same time, we transfer the original pair of images

to the slave C40, that starts the sub-sampling and the matching process for low level resolutions, typically

(128x128) and (64x64). Once the slave C40 have �nished his task it sends the low resolution results to the

master C40 which perform the validation process and computes of the �nal relative depth map. The master
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Fig.8.: DSP hardware architecture

C40 is updated with the data geometry of the system and is responsible by the next baseline or vergence

movement.

The parallel execution of the algorithm have been improved and, we still testing di�erent CPU-C40

allocation solutions in order to improve the software performance.

2.4 Conclusions

In this article we have shown that a dense relative depth map acquisition system with real-time characteristics

is possible using one active vision system. By using an active vision system we split the correspondence process

between the left and right image into a software and a mechanical search. This search combination simpli�es

the matching phase and makes the software algorithm part suitable for parallel hardware implementation

with all the advantages for a real-time system. It is robust, reliable and based on a low-cost active vision

system. There is some simplifying assumptions about the environment (such as no abrupt depth changes), but

they produce fairly dense results whose validity and accuracy can be quantitatively evaluated. The quality

of these results is su�cient for depth cues in many 3D reconstruction applications. The independence of the

algorithm from the calibration process is also an advantage because the results are relative distances between

di�erent points on the object, obtained without a precise camera calibration.
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