

4. Linear classification

EXPLOITING THE CIRCULANT STRUCTURE OF TRACKING-BY-DETECTION WITH KERNELS

João F. Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista

1. Motivation

 $\bar{\mathbf{z}} = \bar{\mathbf{x}}^* \odot \bar{\mathbf{y}}$

 $\bar{\mathbf{z}} = \bar{\mathbf{x}}^* \odot \bar{\mathbf{y}}$

 $\bar{z} = 1/\bar{x}$

INSTITUTO DE SISTEMAS E ROBÓTICA

Z = XY

 $\mathbf{z} = X\mathbf{y}$

 $Z=X^{-1}$

- · Independent proof from a risk minimization point-of-view.
- · Circulant matrices link two fields:
 - · Generic learning algorithms, and
 - Classic signal processing (frequency-domain filter synthesis)

 $n^2 \times n^2$ $n^2 \times 1$ The full kernel matrix $K = C\left(\mathbf{k}\right)$ ⇒ is never built explicitly!

 \Rightarrow

Source code

FCTUC FACULDADE DE CIÊNCIAS

E TECNOLOGIA

UNIVERSIDADE DE COIMBR

Ð

- 11

at 100-400 FPS

Training image x (current frame) and test image z (next frame) must be preprocessed with a cosine window. y has a Gaussian shape centered on the target x, y and z are M-by-N matrices. All FFT operations are standard in MATLAB.

Tracking with kernels

<pre>function alphaf = training(x, y, sigma, lambda) k = dgk(x, x, sigma); alphaf = fft2(y) ./ (fft2(k) + lambda); end</pre>	%	Eq.	7
<pre>function yhat = detection(alphaf, x, z, sigma) k = dgk(x, z, sigma); yhat = real(ifft2(alphaf .* fft2(k))); end</pre>	%	Eq.	9
<pre>function k = dgk(x1, x2, sigma) c = fftshift(ifft2(fft2(x1) .* conj(fft2(x2)))); d = x1(:)*x1(:) + x2(:)*x2(:) - 2*c; k = exp(-1 / sigma^2 * abs(d) / numel(x1));</pre>	%	Eq.	16

This work was supported by the Portuguese Science and Technology Foundation (FCT) through the project PTDC/EEA-CRO/122812/2010, and grants SFRH/BD75459/2010, SFRH/BD74152/2010, and SFRH/BD45178/2008.

to be transformed into efficient Fourier domain operations.