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Abstract

This work addresses the fitting of 3D deformable face models from a single view
through 2.5D Active Appearance Models (AAM). The main contribution of this paper
is the use of 2.5D AAM that combines a 3D metric Point Distribution Model (PDM)
and a 2D appearance model whose control points are defined by full perspective projec-
tions of the PDM. The advantage is that, assuming a calibrated camera, 3D metric shapes
can be retrieved from single view images. Two algorithms and computationally efficient
approximations are proposed, the Simultaneous Forwards Additive (SFA) and the Nor-
malization Forwards Additive (NFA), both based on the Lucas Kanade framework. The
SFA algorithm is computationally expensive but more accurate. It searches for shape
and appearance parameters simultaneously whereas the NFA projects out the appearance
from the error image and searches only for the shape parameters. Expanded solutions for
the SFA and NFA are also proposed in order to take into account head self occlusions.
An extensive performance evaluation is presented. The frequency of convergence for the
SFA, NFA and their efficient approximation is evaluated, showing that the 2.5D model
can outperform 2D based methods. The Robust extensions to occlusion were tested on a
synthetic sequence showing that the model can deal robustly with large head rotation.

1 Introduction

Facial image alignment is the key aspect in many computer vision applications, such as
advanced human computer interaction, face recognition, head pose estimation or realistic
graphical animation. Detecting and tracking faces in video is a challenging task because
faces are non rigid and their images have a high degree of variability in shape, texture, pose
and imaging conditions.

The Active Appearance Model (AAM), introduced by [21], is one of the most effective
face alignment techniques with respect to fitting accuracy and efficiency. AAMs are intrin-
sically 2D models, combining a 2D Point Distribution Model (PDM) and a 2D appearance
model in a single formulation using a fitting process that rely on a precomputed regres-
sion matrix. Later, Matthews et al. [6] reformulate the AAM with true analytical derived
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gradients achieving a better fitting accuracy and real-time performances using the Inverse
Compositional (IC)[14] approach.

Natural extensions to 3D had been proposed [3][4][18], being the 3D Morphable Model
(3DMM) [22] one of the most popular. The main differences between AAMs and 3DMMs
are that 3DMMs are usually constructed to be denser and incorporates a reflectance model
(Phong model). The large amount of data due to the density of the 3DMMs makes the
algorithm quite slow, requiring several seconds to fit to a frame. Efficient 3DMMs [19],
based on the IC algorithm, has also been proposed. Still, its Jacobian and Hessian are only
locally valid and take an average of 30s per frame making it impracticable for real-time
applications.

This paper addresses the fitting of 3D deformable face models from a single view through
2.5D AAM. The 2.5D model can be viewed as a 3D sparse PDM whose projections define
2D control points for the 2D appearance. This means that 2.5D data has components of
both 2D image data and 3D volumetric shape data. Face alignment in this 2.5D dimensional
space will carry an extra level of complexity since the IC approach is invalid in this case
[17]. Matthews et al. [7] proposed a 2D+3D AAM work around by exploiting the 2D and
3D shape models simultaneously. The shape instance generated by 2D AAM is constrained
to be consistent with a projection of 3D affine shape (they use a 3D PDM built from non rigid
structure from motion [8]). This constraint is formulated as a part of the cost function, where
a balancing weight is added. The value of this weighting constant is determined manually.

Our approach uses a single 3D metric PDM combined with a full perspective model, us-
ing an analytically derived gradient. The use of a full perspective model carry an important
advantage over the state of the art solutions since it can track a face by a camera with a short
focal length and strong radial distortion (p.e. a low cost webcam). Assuming a calibrated
camera this solution allows the estimation of 3D euclidean shapes from a single image. Com-
pared to [7], no balancing weight is required since the approach is based on a single 3D PDM.
Two fitting algorithms are proposed: the Simultaneous Forward Additive (SFA) and the Nor-
malization Forward Additive (NFA), both based on the Lucas-Kanade forward additive [16]
update step. The xFA requires evaluating several components per iteration, however efficient
approximations are proposed namely for the Jacobian of the warp computation. Self and par-
tial occlusion are handled using robust fitting techniques. Expanded solutions for the SFA
and NFA are proposed, not accounting for invisible pixels by combining outlier estimation
with clues extracted from 3D pose.

2 2.5D Parametric Models
Our aim is to build a 2.5D AAM by combining a 3D metric Point Distribution Model (PDM)
with a 2D appearance model whose control points are defined by full perspective projections
of the PDM. The 3D PDM is modeled by the shape and pose parameters, p and q respectively,
that uniquely defines a shape s in the 3D space whose projection into the image space sets
2D control points where the generated texture (λ ) is held.

2.1 Shape Model - The PDM
The shape of a non-rigid object can be expressed as a linear combination of a set of n basis
shapes stored in a matrix Φ plus a mean vector. This representation is also known as a Point
Distribution Model (PDM)[20]. A 3D v-point shape is defined by the vertex locations of
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a mesh as s = (X1, . . . ,Xv,Y1, . . . ,Yv,Z1, . . . ,Zv)
T and the PDM is represented by the linear

model s = s0 +Φp, where p is a vector of shape configuration weights, s0 is the mean shape
(also refereed as the base mesh) and the basis Φ = [φ1 · · ·φn] represents the allowed modes
of deformation.

In this work, the 3D PDM, including the full pose variation, is defined by

s = s0 +
n

∑
i=1

piφi +
6

∑
j=1

q jψ j +
∫ t−1

0

6

∑
j=1

q jψ j∂ t︸ ︷︷ ︸
sψ

. (1)

where p are the previous shape parameters, q are the pose parameters and sψ is the contribu-
tion of pose increments over time t. The first two terms represent PDM modes of deforma-
tion, the third term is the current estimated pose, and the last term (sψ ) acts as an offset that
accumulates pose increments from previous time frames. Note that ψ1, . . .ψ6 are a special
set of eigenvectors that are expressed w.r.t. the base mesh, s0, and are only valid for small
changes in pose.

This constraint on the pose changes results from the linear parametrization of the 3D pose
parameters. Expressing a rotation of θ radians around an arbitrary axis w = (wx,wy,wz) by
the Rodrigues formula R = I3 +Asin(θ)+A2(1−cos(θ)), with A being a skew symmetric
matrix, under the assumption of small rotations R can be approximated by R ≈ I3 + Aθ 1.
In a similar way, the small changes in pose that drive the 3D mesh points P = (X ,Y,Z) into
P′ can be linearly parametrized by the vector q = [wx,wy,wz, tx, ty, tz]T as

P′ = P+

 0 Z −Y 1 0 0
−Z 0 X 0 1 0
Y −X 0 0 0 1


︸ ︷︷ ︸

ψ1,...,ψ6

q (2)

where (tx, ty, tz) are the translation components.
Using a full perspective camera, the 3D shape s generated by the PDM (eq.1) is projected

into the image space as

 w(x1 · · ·xv)
w(y1 · · ·yv)

w · · ·w

=

 fx 0 cx
0 fy cy
0 0 1


︸ ︷︷ ︸

K

[
R0 t0

]︸ ︷︷ ︸
Base Pose


sx1 · · ·sxv

sy1 · · ·syv

sz1 · · ·szv

1 · · ·1

 (3)

where K is the camera matrix, assumed to be know (radial distortion can also be included).
R0 and t0 define an extra referential, the base pose, with the purpose of setting a head refer-
ence (since rotation around the camera is not a head rotation). R0 and t0 are estimated in the
PDM building process.

2.2 Texture Model
The texture model is almost identical to the traditional 2D formulation [21]. In our approach
each training image is texture-warped into a common reference using a warping function W.
This function W(xp,p,q) is a piecewise affine warp and is a function of the shape and pose
parameters that defines the 2D texture control points by means of the perspective projection

1The θ coefficient can be dropped by relaxing the constraint that w is unit length.
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of the mesh s (eq.3). The warping is defined for all the projected pixels xp
2 contained in s0p

and is given by

W(xp,p,q) = xpi +α

(
xp j −xpi

)
+β

(
xpk −xpi

)
,∀ triangles ∈ s0p (4)

where xpi , xp j , xpk are triangle vertex’s coordinates and α , β are the barycentric coordinates
for the pixel xp. The appearance model is obtained by applying a low memory PCA on all
the warped training images and it is represented by a base appearance, A0(xp), plus a linear
combination of m eigen images Ai(xp), as A(xp) = A0(xp) + ∑

m
i=1 λiAi(xp), xp ∈ s0p. λi

are the appearance parameters. To model the gain and illumination offset effects, two extra
appearance images are added (Am+1(xp) = A0(xp), Am+2(xp) = 1) which imposes the need
for orthonormalization.

3 Model Fitting
Fitting the AAM consists in finding the best set of parameters, p, q and λ that describe the
face in the target image. Since the IC approach [14] was proved in [17] to be invalid for the
2.5D AAM, the additive formulation proposed by Lucas-Kanade[15][1][10] was adopted.
Two algorithms are proposed and described on the paper: the Simultaneous Forwards Ad-
ditive (SFA) and the Normalization Forwards Additive (NFA). Both formulations include
the 6DOF embedded in the PDM and just like the solutions initially proposed in [15][16] the
SFA searches for all the parameters simultaneously whereas the NFA projects out the appear-
ance from the error image. In section 3.3 it is shown how to maintain the fitting efficiency
by making a simple approximation and precomputing a couple of terms. The experimental
evaluation proved that the proposed solution substantially improves the fitting performance.

3.1 Simultaneous Forwards Additive (SFA)
The SFA goal is to minimize the squared difference between the current instance of the
appearance and the target warped image. The optimization consists in solving

∑
xp∈s0p

[
A0(xp)+

m+2

∑
i=1

λiAi(xp)− I(W(xp,p,q))

]2

(5)

simultaneously for the shape, pose and appearance parameters, p, q and λ respectively.
I(W(xp,p,q)) represents the input image I(xp) warped by W(xp,p,q). The nonlinear opti-
mization in eq.5 can be solved by gradient descent using additive updates to the parameters
as ∑x∈s0p [A0(xp) + ∑

m+2
i=1 (λi + ∆λi)Ai(xp)− I(W(xp,p + ∆p,q + ∆q))]2. Expanding and

holding the first order Taylor terms gives

∑
xp∈s0p

[
A0(xp)+

m+2

∑
i=1

λiAi(xp)+
m

∑
i=1

∆λiAi(xp)− I(W(xp,p,q))−∇I
∂W
∂p

∆p−∇I
∂W
∂q

∆q

]2

(6)

where ∇I = ( ∂ I
∂x ,

∂ I
∂y ) is the gradient of image I(xp) evaluated at W(xp,p,q) (∇I is computed

in the coordinate frame of I(xp) and then warped back using W(xp,p,q)), ∂W
∂p and ∂W

∂p are
the Jacobians of the warp (see section 4).

2During the remaining of the paper, xp = [x,y]T defines a projected 3D point into the 2D image space, by eq.3.
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Defining, in eq.6, all the parameters as r = [pT qT λ T ]T and denoting the (n+6+m+2)
Steepest Descent images SD(xp)sfa as

SD(xp)sfa =
[

∇I
∂W
∂p1

. . . ∇I
∂W
∂pn

∇I
∂W
∂q1

. . .∇I
∂W
∂q6

A1(xp) . . . Am+2(xp)
]
, (7)

then, by taking the partial derivative w.r.t. ∆r and make-it equal to zero comes the closed
from solution

∆r = H−1
sfa ∑

xp∈s0p

SD(xp)T
sfaE(xp)sfa (8)

where Hsfa = ∑xp∈s0p SD(xp)T
sfaSD(xp)sfa is the Gauss-Newton approximation to the Hessian

matrix and E(xp)sfa = A0(xp)+ ∑
m+2
i=1 λiAi(xp)− I(W(xp,p,q)) is the error image. Finally

the parameters are additively updated as r← r + ∆r until ∆r ≤ ε or a maximum number of
iterations has reached.

The SFA algorithm is computationally expensive since for each iteration it is required the
reevaluation of the error image, the gradients after the warp, ∇I(W(xp,p,q)), the Jacobians,
∂W
∂p , ∂W

∂q , that depend on p and q respectively, the SD(xp)sfa images, the Hessian matrix and
its inverse. This makes SFA algorithm rather slow but very accurate since it searches for
shape, pose and appearance parameters simultaneously. Nevertheless, some components of
the Jacobians ∂W

∂p , ∂W
∂q are constant and can be precomputed (see section 4).

3.2 Normalization Forwards Additive (NFA)
A slightly different algorithm to minimize the expression in eq.5 is the NFA algorithm.
An alternative way of dealing with the linear appearance variation is to project out the ap-
pearance images Ai(xp) from the error image [16]. Denoting the appearance into a single
image by A(xp,λ ) = A0(xp) + ∑

m+2
i=1 λiAi(xp), eq.5 can be written as ∑xp∈s0p [A(xp,λ )−

I(W(xp,p,q))]2. Supposing now that there is no appearance variation, and A(xp,λ ) =
A0(xp), the modified SDnfa(xp) are represented as

SD(xp)nfa =
[

∇I
∂W
∂p1

. . . ∇I
∂W
∂pn

∇I
∂W
∂q1

. . .∇I
∂W
∂q6

]
(9)

and the Hessian is Hnfa = ∑xp∈s0p SD(xp)T
nfaSD(xp)nfa. In this framework the error image

is given by E(xp)lk = A0(xp)− I(W(xp,p,q)) and in order to include the full appearance
variation a normalization step is required. It is accomplished in the following two steps:

(1) Project the error image, E(x)lk, into the appearance basis by estimating the appear-
ance parameters using λ = ∑

m+2
i=1 Ai(xp)E(xp)lk.

(2) Remove the component of the error image in the direction of Ai(xp) finding the
normalized error image Enfa(xp) = E(xp)lk−∑

m+2
i=1 λiAi(xp).

The NFA method consist in normalizing the error image (that has appearance A(xp,λ ))
so that the component of the error image in the direction Ai(xp) is zero, this step has the
advantage of estimate the appearance parameters λ . Finally the parameters updates are given

by
[

∆p
∆q

]
= H−1

nfa ∑xp∈s0p SD(xp)T
nfaE(xp)nfa.

The NFA algorithm is less computationally expensive than the SFA, since it projects out
the appearance from the error image and searches only for the shape and pose parameters.
Each iteration requires reevaluating the error image, E(xp)lk, the normalized error image
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E(xp)nfa, ∇I, ∂W
∂p , ∂W

∂q , SD(xp)nfa and H−1
nfa. However, note that the SD(xp)nfa images are

much smaller in number than the SD(xp)sfa, i.e. (n << m). The typical values of n are about
4−5 and m about 40−60.

3.3 Efficient Approximations to SFA and NFA
Some computational load can be reduced by eliminating the need to recompute image gra-
dients at each iteration. Following the idea proposed by Hager et al. [5], and assuming that
we have good estimates for all the parameters p, q and λ (in eq.5) ,the error image E(xp)sfa
will be ≈ 0 and we can say that:(

A0(xp)+
m+2

∑
i=1

λiAi(xp)

)
≈ I(W(xp,p,q))⇒

(
∇A0(xp)+

m+2

∑
i=1

λi∇Ai(xp)

)
︸ ︷︷ ︸

∇Ai(xp ,λ )

≈ ∇I(W(xp,p,q)). (10)

Under this approximation, the Efficient SFA/NFA Steepest Descent images from eq.7 and
eq.9 can be written as

SD(xp)esfa =
[

∇Ai(xp,λ )
∂W
∂p1

. . . ∇Ai(xp,λ )
∂W
∂pn

∇Ai(xp,λ )
∂W
∂q1

. . .∇Ai(xp,λ )
∂W
∂q6

A1(xp) . . . Am+2(xp)
]
,

(11)
SD(xp)enfa =

[
∇A0(xp)

∂W
∂p1

. . . ∇A0(xp)
∂W
∂pn

∇A0(xp)
∂W
∂q1

. . .∇A0(xp)
∂W
∂q6

]
. (12)

This approximation, besides providing extra computation efficiency (the gradients of the
template can be precomputed), it has the great advantage of providing better stability to noise
sensitivity since it avoids the reevaluation of the gradients in the input image ∇I(W(xp,p,q))
(and both warps Ix(W(xp,p,q)), Iy(W(xp,p,q)) ) at each iteration.

3.4 Robust Fitting
Both SFA and NFA are data driven algorithms and the error image continuously drives the
models in futher updates. In the case of occlusion, the error image accounts for all the pixels
equally (L2 norm) leading the model to diverge. To overcome this problem, occlusion can be
modeled as outlier pixels in the appearance model and handled by robust fitting methods [13]
[9], namely by Iteratively Reweighted Least Squares (IRLS) where outliers are not accounted
for the parameters updates.

Robust fitting seek to minimize ∑xp ρ
(
E(xp)2

sfa,σ
)

where ρ(.) is a robust function and
σ is the scale parameter that can be estimated from the error image. The derivation of the
Robust version of SFA algorithm (RSFA) is similar to section 3.1, where the parameters up-
date is given by ∆r = H−1

rsfa ∑x∈s0p ρ(E(xp)2
sfa)SD(xp)T

sfaE(xp)sfa with ρ(E(xp)2
sfa) being the

weight mask that measures the confidence of each pixel over the base mesh and the Hes-
sian is Hrsfa = ∑x∈s0p ρ(E(xp)2

sfa)SD(xp)T
sfaSDsfa(xp). In the same way, the Robust version

of NFA (RNFA) includes a weight mask in the Steepest Descent images, SD(xp)nfa and in
the Hessian, Hrnfa. Just like in the NFA algorithm, the RNFA requires a robust appearance
normalization. A slightly modified solution of the normalization step proposed in [16] was
used. The efficient approximations presented in section 3.3, are also valid for the robust
fitting versions.

3.4.1 Modified Robust Error Function

The 2.5D model has the advantage that is able to estimate visible areas (say mesh triangles)
in the image projection model. Invisible triangles by the camera can be dropped, setting
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them as outliers and not taking them into consideration in the fitting process.
The modified robust error function is based on the Talwar function and the scale param-

eter σ is estimated by using information about the triangles visibility over the base mesh
through Back-face Culling (figures 1-d)-e)).

4 The Jacobian of the Warp
The Jacobians of the warp measure the rate of change of the destination in the warp W(xp,p,q)
w.r.t. the parameters p and q. Two Jacobians must be derived ∂W(xp,p,q)

∂p and ∂W(xp,p,q)
∂q , w.r.t.

shape and pose parameters respectively.
The Jacobian for the shape parameters can be decomposed by the chain rule as

∂W(xp,p,q)
∂p

=
v

∑
k=1

[
∂W(xp,p,q)

∂xk

∂xk

∂p
+

∂W(xp,p,q)
∂yk

∂yk
∂p

]
. (13)

Taking eq.4, comes that ∂W(xp,p,q)
∂xk

= (1−α−β ,0) and ∂W(xp,p,q)
∂yk

= (0,1−α−β ). These
Jacobians are images w.r.t. a particular vertex and have the same size of the projected base
mesh s0p. Figure 1-a)-b)-c) shows examples of these images for some landmarks (note the x
and y components). The Jacobians are only non zero around the neighbors triangles of vertex
kth, taking the maximum value of 1 at the vertex location and decaying linearly with a rate
of 1−α−β to the other surrounding vertex’s.

x

y
(a) ∂W

∂x30
∂W
∂y30

(b) ∂W
∂x40

∂W
∂y40

(c) ∂W
∂x56

∂W
∂x56

(d) (e)

Figure 1: a)-b)-c) Shows ∂W(x,p,q)
∂xk

and ∂W(x,p,q)
∂yk

for the landmarks 30, 40 and 56, respectively. Top
and bottom rows represent Wx(xp,p,q) and Wy(xp,p,q) components. d)-e) Triangle visibility by
Back-face Culling for a head pitch variation of 40◦, 45◦, 90◦ and 120◦ (top-left to bottom-right) w.r.t
the base pose. Nonvisible triangles (in black) are not used to update the parameters.

The remaining terms ∂xk
∂p and ∂yk

∂p are both scalars, found by combining eq.3 and eq.1, as

 wxk
wyk
w

= K
[

R0 t0
]

sxk
0 + piφ

xk
i

syk
0 + piφ

yk
i

szk
0 + piφ

yk
i

1

 (14)

with i = 1, . . . ,n parameters and k = 1, . . . ,v landmarks. To compute ∂xk
∂p we take the differ-

ential ∂

∂p (wxk
w ) from eq.14 and the same for ∂yk

∂p = ∂

∂p (wyk
w ). Results are omitted due the lack

of space.
The same approach is taken to evaluate the Jacobian of the warp for the pose parameters,

∂W(xp,p,q)
∂q . A chain rule decomposition is made and the new terms ∂xk

∂q and ∂yk
∂q , again both
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scalars, are found by combining eq.3 with eq.1, leading to

 wxk
wyk
w

= K
[

R0 t0
]

sxk
0 +qiψ

xk
i + sxk

ψ

syk
0 +qiψ

yk
i + syk

ψ

szk
0 +qiψ

zk
i + szk

ψ

1

 (15)

with i = 1, . . . ,6 and k = 1, . . . ,v. In the same way, ∂xk
∂q = ∂

∂q (wxk
w ) and ∂yk

∂q = ∂

∂q (wyk
w ).

The Jacobians of the warp depend on p and q, so they are required to be recomputed
at every iteration. However, both components ∂W(xp,p,q)

∂xk
and ∂W(xp,p,q)

∂yk
depend only on the

configuration of the base mesh and thus can be precomputed and efficiently stored as sparse
matrices, reducing the overall computation. At the fitting stage only the computation of ∂xk

∂p ,
∂yk
∂p , ∂xk

∂q and ∂yk
∂q is required, being all scalar values.

5 Experimental Results
The 2.5D AAM was constructed from a set of 7 human faces. The 3D PDM was built using
a fully calibrated stereo system where the 2D shape on each view was extracted by fitting a
2D AAM[6] using v = 58 landmarks. The 3D shape was recovered using the classical trian-
gulation algorithm on a total of 20 images for each individual (10 left + 10 right) exhibiting
several expressions and head poses. The AAM holds n = 5 shape parameters, m = 47 eigen
faces and uses about 74600 grey level pixels. The initial 6DOF estimate is provided by com-
bining a face detection (Adaboost [11]) with the Pose from Orthography and Scaling with
ITerations (POSIT)[2], using the base mesh s0 as the required 3D rigid model.

5.1 Fitting Robustness and Rate of Convergence
To evaluate the fitting robustness and the rate of convergence of the proposed solutions, we
follow the performance evaluation scheme, presented in [6][7]. Figure 2 shows the results
obtained by comparing the fitting robustness and rate of convergence of all the non robust
2.5D algorithms discussed and the 2D state of the art leading approach (Simultaneous Inverse
Compositional - SIC [12]). These experiments measure the performance of the algorithms in

(a) Convergence Frequency (b) Rate of Convergence

Figure 2: Robustness fitting and convergence comparison between 2.5D and 2D algorithms.

two ways: (1) the average frequency of convergence i.e. the number of times each algorithm
has converged vs. initial perturbation; (2) the average rate of convergence i.e. the 2D RMS
error in the mesh point location vs. iteration number (if convergence was accomplished).
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For these experiments, the AAM was perturbed from a set of ground truth parameters
using independent Gaussian distributions with variance equal to a multiple of a given eigen-
value mode, and tested for convergence. The ground truth data was generated using the same
AAM by a combination of tracking (say fitting in every frame) / hand initialization / visual
confirmation on several small sequences of each individual. A subset of 10 random selected
frames, from each sequence, were used for futher testing, accounting a total of 70 frames.
For each testing frame we generate a number of 20 trials by perturbing the shape and appear-
ance parameters simultaneously from the ground-truth. All the algorithms are executed and
its convergence ability was evaluated by comparing the final 2D RMS error shape with the
ground-truth. A threshold of 1.0 RMS pixels was used to define convergence.

Analyzing figure 2, we can conclude that 2.5D fitting algorithms are more robust than
2D algorithms and they converge faster, taking less iterations to converge. The 3D PDM is
inherently higher dimensional than the 2D PDM, however, it uses less 3D shape parameters
than the 2D PDM to represent the same visual phenomenon. The 3D PDM is also less prone
to local minima because an 2D model can easily generate a physically unfeasible shape.

The results also show that the efficient versions proposed perform better than the standard
formulations. The main reason for this performance increase is the reduced noise influence
that comes out from avoiding the reevaluation of the gradients of the input image in each
iteration. The Efficient-SFA, that searches simultaneously for all the parameters, has proved
to be the best algorithm w.r.t. convergence speed with high fitting success rates even from
far initial estimates.

5.2 Robust Methods Evaluation

The robust fitting methods proposed in this work intend to improve the performance w.r.t.
self occlusion due to 3D head motion. To evaluate these algorithms, namely the RNFA,
the RSFA and the Efficient versions ERNFA and ERNFA, three synthetic sequences were
created. A set of images with an individual standing in near frontal position was used. The
current 3D mesh location s was found by fitting the 2.5D AAM (using ESFA). Then, ranging
the 3D mesh from −90◦ to 90◦ degrees in both roll, pitch and yaw angles, using one degree
of resolution, the fixed appearance image is projected into the camera and stored (figure 3-
left). Finally, all the fitting algorithms were evaluated using these sequences, starting from
the frontal position. In all the algorithms the scale parameter, σ , is found by assuming
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Figure 3: Robust algorithms evaluation on the synthetic sequences at left figure. The graphics show
the RMS error due to roll, pitch and yaw angles ranging from −90◦ to 90◦, respectively.

that exists 20% of outliers. Figure 3-bottom shows the RMS error in point location for all
the algorithms. Once again the Efficient versions of the algorithms (ERNFA and ERSFA)
outperform their standard versions (RNFA and RSFA). Also the ERSFA performs slightly
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better that the ERNFA, as expected, due to the parameters search strategy. These experiments
show that, using the efficient algorithms, the model can deal with rotations in about +/-70◦

roll, +/-50◦ pitch and +/-45◦ in yaw angles.

5.3 Head Pose Estimation
Although the proposed methods are not explicitly oriented for pose estimation, the updates
on the pose parameters, ∆q, can be analyzed and used for this purpose. In this section, only
the ESFA algorithm has been used, since it was proved to be the most accurate.

Figure 4 shows the estimated rigid head pose during a video sequence where the subject
performs several human head movements. It consists in making (independent) head rotations
first in pitch, then in yaw and finally in roll orientations, returning always to frontal position.
Finally, the distance to the camera was also evaluated. The pose estimation accuracy is
performed comparing the pose estimated with the one estimated from a planar checkerboard,
used as ground truth reference values. The error standard deviation found was about 1.6◦,
1.7◦, 3.5◦, 28.8mm in roll, pitch and yaw angles and distance, respectively.
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Figure 4: Head pitch, yaw, roll and distance evaluation. The horizontal axis is the time line.

6 Conclusions
In this paper we perform 3D facial image alignment from single view 2D images through
a 2.5D AAM. The 2.5D AAM combines a 3D metric PDM with a full perspective projec-
tion that define the 2D appearance. The model is able to recover 3D Euclidian shapes by
assuming a calibrated camera. Two algorithms and computational efficient approximations
are proposed, both are based on the Lucas and Kanade framework. The SFA, compared with
NFA, is the most accurate algorithm although is also the most computationally expensive.
Their efficient versions have shown a substantial improvement in the fitting performance,
being more robust to noise and able to converge from far initial estimates, requiring less
computational effort. To make the model able to deal with self or partial occlusion, robust
extensions to SFA and NFA are also proposed. Again, their efficient approximations per-
form much better that the basic versions. Several performance evaluation carried on real an
synthetic data demonstrated that the 2.5D AAM outperform the traditional 2D AAM and
accurately handle face pose variations.
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A The Jacobian of The Warp Partial Differentials
Defining the elements m0i j of the base projection matrix M0 as m011 m012 m013 m014

m021 m022 m023 m024
m031 m032 m033 m034


︸ ︷︷ ︸

M0

= K
[

R0 t0
]

(16)

the quantities ξ1, . . . ,ξ6 and Ξ1, . . . ,Ξ6 are scalar values given by
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 Ξ4
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ERRATA
Dear reader, unfortunately, we found some mistakes after the publication:

• Minus operator missing in eqs.7 and 11 in the appearance images

SD(xp)sfa =
[

∇I
∂W
∂p1

. . . ∇I
∂W
∂pn

∇I
∂W
∂q1

. . .∇I
∂W
∂q6

−A1(xp) . . . −Am+2(xp)
]

SD(xp)esfa =
[

∇Ai(xp,λ )
∂W
∂p1

. . . ∇Ai(xp,λ )
∂W
∂pn

∇Ai(xp,λ )
∂W
∂q1

. . .∇Ai(xp,λ )
∂W
∂q6

−A1(xp) . . . −Am+2(xp)
]

• Missing some shape components in eqs.14

 wxk
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w

= K
[

R0 t0
]︸ ︷︷ ︸

M0


sxk
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n
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∂pi
=

ξ1Ξ3−Ξ1ξ3

(Ξ3)2 and
∂yk
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=

ξ2Ξ3−Ξ2ξ3

(Ξ3)2

with i = 1, . . . ,n (shape parameters) and k = 1, . . . ,v (landmarks).

• Also in eq.15

 wxk
wyk
w

= M0


sxk
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n
i=1 piφ
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i +q jψ
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j +∑i 6= j qiψ
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=

ξ4Ξ6−Ξ4ξ6

(Ξ6)2 and
∂yk

∂q j
=

ξ5Ξ6−Ξ5ξ6

(Ξ6)2

with j = 1, . . . ,6 (pose parameters) and k = 1, . . . ,v (landmarks).

We apologize for the inconvenience.


