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This work addresses the fitting of 3D deformable face models from
a single view through 2.5D Active Appearance Models (AAM) [4]. The
main contribution of this paper is the use of 2.5D AAM that combines a
3D metric Point Distribution Model (PDM) and a 2D appearance model
whose control points are defined by full perspective projections of the
PDM. The advantage is that, assuming a calibrated camera, 3D metric
shapes can be retrieved from single view images.

1 2.5D Parametric Models

The shape of a non-rigid object can be expressed by a linear combination
of a set of n basis shapes (stored in a matrix ®) i.e. a PDM. A 3D v-

point shape is defined by s = (Xl,...,XV,YI,...,Yv,Zl,...,ZV)T and the
3D PDM, including the full pose variation, is given by
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where p are the shape parameters, q = [wy, wy, wz,tx,ty,tz]T are the pose
parameters and sy, is the contribution of pose increments over time t.
Vi,... Y are a special set of eigenvectors that are expressed w.r.t. the
base mesh, sg, and derived from first order approximations of the Ro-
drigues rotation formula (becoming only valid for small changes in pose).

Using a full perspective camera, the 3D shape s is projected into the
image space as xp = K [ Ry ‘ to ] s where K is the camera matrix, as-
sumed to be know and Ry |tg is the Base Pose - the head reference.

The 2D appearance model is built by texture-warp all the training
images into a common reference using a warping function W. The warp
W(xp,P,q) is a piecewise affine warp and is a function of the shape and
pose parameters that defines the 2D texture control points by means of
the perspective projection of the mesh s. The appearance model given by
A(xp) = Ao(xp) +)::’i+12 AiA;(xp), Xp € sop where A is a m dimensional
vector of appearance parameters. Two extra eigen images are used to
model illumination gain and offset.

2 Model Fitting

Fitting the 2.5D AAM consists in solving
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simultaneously for p, q and A respectively. I(W(xp,p,q)) represents the

input image I(xp) warped by W(xp,p,q). Since the Inverse Composi-
tional approach was proved in [2] to be invalid for the 2.5D AAM, the
additive formulation proposed by Lucas-Kanade[3] was adopted. Eq.2
can be solved by the Simultaneous Forwards Additive (SFA) using addi-
tive updates to the parameters as
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are the Steepest Descent images that depend on p and q (by the Jacobian
of the Warp %—‘;V and %—‘:) and E(Xp ), is the Error image.

The Normalization Forwards Additive (NFA) algorithm solves eq.2
by projecting out the appearance images A;(xp) from the error image.
searching only for the shape and pose parameters. The parameters up-

date is given by [ iﬁ } =H_ Yx,50p SD(xp )]t E(Xp)nfa> Where the

SD(Xp )nfa are far less dimensional than the equivalent for SFA algorithm.
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Figure 1: Example of 2.5D AAM fitting.

Some computational load can be reduced by eliminating the need
to recompute image gradients at each iteration. Following the idea pro-
posed by [1] we can use the approximation VI(W(xp,p,q)) ~ VAo (xp) +
Z:-":lz AiVA;(xp) which, besides providing extra computation efficiency
(the gradients of the template in eq.4 can be precomputed), it has the great
advantage of providing better stability to noise sensitivity since it avoids
the reevaluation of the gradients in the input image.

Self-occlusion can be modeled as outlier pixels in the appearance
model and handled by robust fitting methods. Robust fitting seek to mini-
mize Yx P (E(xp)%,, o) where p(.) is a robust function and o is the scale
parameter. Using Back-face Culling invisible triangles by the camera can
be dropped, setting them as outliers and not taking them into considera-
tion in the fitting process.

2.1 The Jacobian of the Warp

The Jacobian for the shape parameters can be decomposed by the chain

rule as IW( Xp P.q) ZV BW;;,:P q) axk + aW(BX;;p ) aYk] The awg‘;lzpaq)
and %;kp,q) components are given by (1—a—p,0)and (0,1—a—p)

respectively, where @ and 3 are barycentric coordinates of the projected
base mesh sop. They depend only on the configuration of the base mesh
and thus can be precomputed and efficiently stored as sparse matrices.
The same approach is taken to evaluate the Jacobian of the warp for the
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pose parameters 7q . The remaining terms 9. Ip, and Ja,” 9q,
are all scalars given by
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i=1,...,n shape parameters; j = 1,...,6 pose paramelers k=1,...,vlandmarks.
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