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1. Introduction1

This document provides three extra sections with additional details that were excluded from the main2

document to meet length requirements. Section Appendix A describes the details envolving the efficient3

warping procedure. Section Appendix B provides the derivation of eq.B.7 that appears as part of the4

solution of the Simultaneous Forwards Additive (SFA) algorithm in section 3.1 of the main document.5

Finally, Appendix C describes the used approach to build the 3D PDM using a stereo pair of cameras.6

For the sake of notation, we rewrite the equations that are required for this supplementary material7

section:8

• The 3D Point Distribution Model (PDM), including the full pose variation, is defined by9

s = s0 +
n∑
i=1

piφi +
6∑
j=1

qjψj + sψ (1)

• The 3D shape s is projected into the image space using a full perspective camera, as10
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︸ ︷︷ ︸
PDM shape (eq.1)
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• The piecewise affine warp function is given by11

W(xp,p,q) = xpi
+ α

(
xpj
− xpi

)
+ β

(
xpk
− xpi

)
,∀ triangles ∈ s0p (3)

where xpi
, xpj

, xpk
are triangle vertex’s coordinates and α, β are the barycentric coordinates for the12

projected pixel xp.13

Appendix A. Piecewise Affine Warp14

The piecewise affine warp is composed by sets of affine warps between corresponding triangles of the15

mesh. The base triangles are found by partitioning the convex hull of the projected mean shape, s0p, using16

the Delaunay triangulation, and each pixel belonging to a given triangle is mapped to its correspondent17

triangle using barycentric coordinates.18

As mentioned, two meshes are involved in the warping procedure: the projected base mesh s0p (that is19

fixed) with the triangle vertexes < (x0
pi
, y0
pi

)T , (x0
pj
, y0
pj

)T , (x0
pk
, y0
pk

)T > and the current projected mesh sp20

with the triangles vertexes coordinates < (xpi
, ypi

)T , (xpj
, ypj

)T , (xpk
, ypk

)T >, being (i, j, k = # triangles).21

22

The barycentric coordinates α, β, used in eq.3, are given by23

α =
(xp − x0

pi
)(y0

pk
− y0

pi
)− (yp − y0

pi
)(x0

pk
− x0

pi
)

(x0
pj
− x0

pi
)(y0

pk
− y0

pi
)− (y0

pj
− y0

pi
)(x0

pk
− x0

pi
)

(A.1)

24

β =
(yp − y0

pi
)(x0

pj
− x0

pi
)− (xp − x0

pi
)(y0

pj
− y0

pi
)

(x0
pj
− x0

pi
)(y0

pk
− y0

pi
)− (y0

pj
− y0

pi
)(x0

pk
− x0

pi
)
, (A.2)

and the eqs. 3, A.1, A.2, 1 and 2 can be combined into a single per-triangle affine warp, as25

W(xp,p,q) = (a1 + a2xp + a3yp, a4 + a5xp + a6yp)T (A.3)
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Figure A.1: Computing the piecewise affine warp W(xp,p,q). Each pixel xp belonging to a given triangle < (x0
pi
, y0pi

)T ,

(x0
pj
, y0pj

)T , (x0
pk
, y0pk

)T > in the projected base mesh s0p is mapped to the correspondent triangle < (xpi , ypi )T , (xpj , ypj )T ,

(xpk , ypk )T > of the current projected mesh sp using barycentric coordinates (α, β).

where a1, a2, a3, a4, a5 and a6 are the affine parameters that are given by26

a1 = (xpi(x0
pj

y0
pk
− y0

pj
x0

pk
) + x0

pi
(xpky0

pj
− y0

pk
xpj ) + y0

pi
(x0

pk
xpj − x0

pj
xpk ))/∆

a2 = (y0
pk

(xpj − xpi) + y0
pi

(xpk − xpj ) + y0
pj

(xpi − xpk ))/∆

a3 = (x0
pk

(xpi − xpj ) + x0
pj

(xpk − xpi) + x0
pi

(xpj − xpk ))/∆

a4 = (ypi(x0
pj

y0
pk
− y0

pj
x0

pk
) + x0

pi
(ypky0

pj
− y0

pk
ypj ) + y0

pi
(x0

pk
ypj − x0

pj
ypk ))/∆

a5 = (y0
pk

(ypj − ypi) + y0
pi

(ypk − ypj ) + y0
pj

(ypi − ypk ))/∆

a6 = (x0
pk

(ypi − ypj ) + x0
pj

(ypk − ypi) + x0
pi

(ypj − ypk ))/∆

with

∆ = (x0
pj
− x0

pi
)(y0

pk
− y0

pi
)− (y0

pj
− y0

pi
)(x0

pk
− x0

pi
).

(A.4)

27

The affine parameters a1, . . . , a6 need only to be computed once per triangle, not once per pixel. Also,28

and since the projected base mesh is fixed (i.e. there is always a constant warping frame), a lookup table29

that encodes the triangle identity speeds up the entire warping procedure.30

Figure A.2 shows a warping example from an input image I(xp) to I(W(xp,p,q)) using the warp31

W(xp,p,q) and the described triangle lookup table.32
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(a) Input image I(xp) (b) I(W(xp,p,q))
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(c) Triangle lookup table

Figure A.2: Piecewise affine warping example. a) Shows the input image I(xp). b) The warped image I(W(xp,p,q)) using

the warp W(xp,p,q). c) The triangle lookup table that encodes the triangle identity. Each pixel position holds the number

of the triangle it belongs to.

The algorithm 1 summarizes this section by showing the list of steps required to perform the piecewise33

affine warp.34

Precompute: The triangle lookuptable (see figure A.2-c)1

Evaluate the current mesh s from p and q using eq.12

Find the full perspective mesh projection sp with eq.23

Compute the affine parameters (a1, a2, a3, a4, a5, a6) for each triangle using eqs.A.44

For each pixel xp in the projected base mesh s0p , lookup the triangle where xp lies in and then lookup the5

corresponding values of (a1, . . . , a6)

Evaluate W(xp,p,q) from eq.A.3 and bilinear interpolate to find I(W(xp,p,q))6

Algorithm 1: Piecewise affine warp.

35

36

Appendix B. SFA Derivation37

The nonlinear optimization38

arg min
p,q,λ

∑
xp∈s0p

[
A0(xp) +

m+2∑
i=1

λiAi(xp)− I(W(xp,p,q))

]2

(B.1)
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can be solved by gradient descent using additive updates to the parameters as39

∑
x∈s0p

[A0(xp) +
m+2∑
i=1

(λi + ∆λi)Ai(xp)− I(W(xp,p + ∆p,q + ∆q))]2. (B.2)

Using a first order Taylor expansion, the last term can be expressed as40

I(W(xp,p + ∆p,q + ∆q)) ≈ I(W(xp,p,q)) +
∂I(W(xp,p,q))

∂p
∆p +

∂I(W(xp,p,q))
∂q

∆q, (B.3)

and, the chain rule can be used on part of the second term of eq.B.3, giving41

∂I(W(xp,p,q))
∂p

=
[
∂I(W(xp,p,q))

∂x

∂Wx(xp,p,q)
∂p

+
∂I(W(xp,p,q))

∂y

∂Wy(xp,p,q)
∂p

]
. (B.4)

Rearranging the terms, results42

∂I(W(xp,p,q))
∂p

=
[
∂I(W(xp,p,q))

∂x

∂I(W(xp,p,q))
∂y

]
︸ ︷︷ ︸

∇I(W(xp,p,q))


∂Wx(xp,p,q)

∂p1

· · · ∂Wx(xp,p,q)
∂pn

∂Wy(xp,p,q)
∂p1

· · · ∂Wy(xp,p,q)
∂pn


︸ ︷︷ ︸

Jacobian of the Warp
∂W(xp,p,q)

∂p

,

(B.5)

being ∇I(W(xp,p,q)) the gradients of the image I(xp) evaluated at W(xp,p,q) and the term ∂W(xp,p,q)
∂p43

the Jacobian of the warp w.r.t. the shape parameters, p.44

Similarly for the pose parameters, q, part of the last term of eq.B.3 can be written as45

∂I(W(xp,p,q))
∂q

= ∇I(W(xp,p,q))
∂W(xp,p,q)

∂q
. (B.6)

Finally the eq.B.2, can be written as46

∑
xp∈s0p

[
A0(xp) +

m+2∑
i=1

λiAi(xp) +
m+2∑
i=1

∆λiAi(xp)− I(W(xp,p,q))−∇I
∂W
∂p

∆p−∇I
∂W
∂q

∆q

]2

. (B.7)

Appendix C. Building The 3D PDM From Stereo Data47

The 3D shape model (PDM) can be acquired from several ways such as using laser range scans[1],48

time-of-flight (ToF) cameras[2], structure from motion (SfM) techniques[3][4] and of course multi-camera49

networks. The 3D PDM used in this work, was built using a fully calibrated stereo system where the 2D50

shape on each view was extracted by fitting a 2D AAM[5] using v = 58 landmarks. See figure C.3.51
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Figure C.3: Left and right images captured by a calibrated stereo system. Each shape annotation results from applying a 2D

AAM. The 3D recovered structures (for each camera) are shown on the right picture. Red and blue colors respectively.

The classical triangulation algorithm was used to recover the 3D structure for each view. In short, the52

triangulation algorithm consists in finding the depths Zl and Zr from the normalized perspective projections53

(xl, yl) = (Xl

Zl
, Yl

Zl
) and (xr, yr) = (Xr

Zr
, Yr

Zr
) with (Xl, Yl, Zl) and (Xr, Yr, Zr) being the coordinates of the54

same 3D point in the left and right camera frame, all this, knowing the rotation R and translation t between55

cameras. The least-squares solution, using all the v points in each shape annotation, is given by56

 Zl1 · · · Zlv

Zr1 · · · Zrv

 =

 −R


xr1 · · · xrv

yr1 · · · yrv

1 · · · 1




xl1 · · · xlv

yl1 · · · ylv

1 · · · 1





†

[
t · · · t

]
. (C.1)

Using eqs.C.1, the 3D shape mesh samples from pairs of 2D image annotations can be retrieved, as57

illustrated in figure C.3. However, these mesh coordinates are expressed w.r.t. the camera coordinate frame58

and therefore the user head rotations are not correctly modeled. To overcome this problem, the PDM was59

converted into the base pose (R0, t0) coordinate frame (as included in eq.2)1, by firstly removing the mean60

from s0, centering the mean shape around de origin2 and then R0 and t0 were found by solving the following61

1Expressing the PDM w.r.t. another coordinate frame requires only changes on the rigid motion (s0).
2It would be convenient to center s0 around the neck axis, where the true head rotations are made. However, estimating

the true neck coordinate frame is not in the scope of this work. We simply move the center of gravity of s0 back and down

50mm as s0 ← (s
xi
0 , s

yi
0 − 50, s

zi
0 − 50), i = 1, . . . , v.
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optimization problem:62

arg min
θ,γ,tz

K

 Rpan(θ)Rroll(γ)


0

0

tz







sx1
0 · · · s

xv
0

sy10 · · · s
yv

0

sz10 · · · s
zv
0

1 · · · 1


(C.2)

where Rpan(θ) and Rroll(γ) represent the pan and roll rotations matrices by θ and γ amount, respectively,63

that changes the 3D orientation of s0. The tz parameter is the translation along the camera optical axis64

from the centroid of the mean shape s0.65

The optimization in eq.C.2 is performed in four steps. First tz is found by setting a desirable 2D mesh66

projection width over the image plane (p.e. 200 pixels) holding θ and γ equal to zero. This width value67

defines the base mesh projection size that is related to all the fitting algorithms computational complexity.68

The base mesh projection size define the constant warping frame described in the texture model section69

and consequently the size of all the Steepest Descent images. Then θ and γ are optimized independently in70

order to hold a symmetric mesh projection. A symmetric shape is desirable to balance the model fitting,71

otherwise the AAM will perform better for user head rotations where the texture model holds more pixels.72

Finally, the last step consist in optimize again for tz using the previously found values of θ and γ, just73

to hold the desirable 2D mesh projection width. The base pose is then given by74

R0 = Rpan(θ)Rroll(γ) and t0 =


0

0

tz

 . (C.3)
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