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Shape Model

• Solution for discriminative based Active Appearance Models (AAM).

• The model consists in a set of descriptors which are covariances of multiple features evaluated over the neighborhood of landmarks whose locations are governed by a Point Distribution Model

(PDM). The covariances are a special set of tensors that lie into a Riemannian Manifold. Is possible to mesure the dissimilarity and to update them, imposing temporal appearance consistency.

• The fitting method uses a combination of exustive local search, finding modes with mean-shfit and clustering for each landmark independently. The global optimization then constrains each

landmark location update by the PDM.
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Dissimilarity Between Covariances
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Mean over the Manifold
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Patch-Based Descriptor

Discriminative Active Appearance Models
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Weighted Mean over the Manifold
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Shape + Similarity Warp

Jacobians of the Warp
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• Minimizing the covariance dissimilarity between
the model and the covariance computed at a 
shifted location – constrained to be consistent
with the PDM – for all the v patches
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Goal

• Find local optimal displacements

p – shape parameters
q – pose parameters

Shape
Covariance Covariance of Multiple Features

Weighted LS Solution

• Constrain local updates to lie in the
subspace spaned by the PDM 

• Diagonal Matrix of Weights
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•Start with na estimate for the position of the face [Adaboost]

• For each landmark k

• Generate a PDM instance

• Warp image into the base mesh

• Response maps by exhaustive local search

• Use mean-shift to find models (local minima) 

• Unsupervised search for the clusters

• Select the best cluster 

• Assign landmark matching weight

• Find weighted warp update

• Update shape and pose parameters
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Algorithm: 

ppp ∆+←

Until |∆p, ∆q|<ε
or maximum iterations

Similarity Warp

Image Normalization

Evaluation on the Talking Face Sequence
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Selecting the Best Cluster
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• Landmark Matching Score
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Dissimilarity
Response Maps

Unsupervised
Clustering

• Unsupervised
learning of finite
mixture models,

IEEE TPAMI, 
M.Figueiredo and

A.JainSampled Cov.
• Seed Weights

Model Cov.

Impose Temporal 
Appearance Consistency

By Updating Model
Covariances AcrossTime

• The covariance computation is not invariant to scale and rotation effects
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Mean over the Manifold

Offline Computations:

• PDM

• Jacobians of the Warp

• Shape Location Covariance

• Average Covariances

• Statistics of Dissimilarity
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