

Simultaneous Cascaded Regression

Pedro Martins, Jorge Batista http://www.isr.uc.pt/~pedromartins pedromartins@isr.uc.pt

Institute of Systems and Robotics (ISR) University of Coimbra Portugal

IEEE International Conference on Image Processing (ICIP) 2018, Athens, Greece

Introduction

- Facial landmark localization with deformable models (nonrigid face alignment)
- Lucas & Kanade Image Alignment Framework
 - Simultaneous Forwards Additive / Inverse Compositional Algorithm
- Cascaded Regression Framework
- Simultaneous Algorithm: Cascaded Regression Extension
 - Regression w/ both shape and appearance structure

Outline

- Related Work
- Base Components
 - Warp Function
 - Parametric Models of Shape and Appearance
- Lucas & Kanade Image Alignment Framework
 - Simultaneous Forwards Additive (SFA)
 - Simultaneous Inverse Compositional (SIC)
- Simultaneous Cascaded Regression (SCR)
- Evaluation Results (LFPW, HELEN, LFW, 300W datasets)

Related Work

- Active Shape Model (ASM)
- Deformable Part Model (DPM)
- Active Appearance Model (AAM)
 - Project-Out Inverse Compositional (PO-IC)
 - Simultaneous Inverse Compositional (SIC)
- Constrained Local Model (CLM)
 - Convex Quadratic Fitting (CQF)
 - Subspace Constrained Mean-Shifts (SCMS)
 - Bayesian CLM (BCLM)
- Cascaded Regression (CR)
 - Supervised Descent Method (SDM)
 - Project-Out Cascade Regression (PO-CR)

Active Appearance Model (AAM)

Newton Methods vs Cascaded Regression

Piecewise Affine Warp (@AAMs) [Not Used Here]

Patch based Local Warp

Landmarks

Similarity Warp (s, θ, tx, ty)

Local Patches

Features (HoG)

Parametric Shape and Appearance Models

Shape Model

Local Appearance Model (LAM)

- Combined Parametric Model
 - Shape Regularization
 - Local Appearance (w/ HoG Features)

- Model Optimization/Fitting
 - Linear Warp Function
 - LK Framework
 - Cascaded Regression

 $\mathcal{M}(\mathbf{p}, \boldsymbol{\lambda}) \equiv \mathcal{W}(\mathbf{s}; \mathbf{p}) []\mathcal{A}(\mathbf{x}; \boldsymbol{\lambda})$

Appearance

9

Simultaneous Forwards Additive (SFA)

Parameters Update

Shape Parameters $\mathbf{p} \leftarrow \mathbf{p} + \Delta \mathbf{p}$

Appearance Parameters $oldsymbol{\lambda} \leftarrow oldsymbol{\lambda} + \Delta oldsymbol{\lambda}$

Simultaneous Inverse Compositional (SIC) $\arg \min \|\mathbf{A}_0 + \mathbf{A}\boldsymbol{\lambda} - \mathbf{I}(\mathcal{W}(\mathbf{p}))\|^2$ Goal I(x) $\mathbf{p}, \boldsymbol{\lambda}$ Face Model Warped Instance **Iteratively solve for small updates** $\arg\min_{\Delta \mathbf{p}, \Delta \boldsymbol{\lambda}} \left\| \mathbf{A}_0(\mathcal{W}(\Delta \mathbf{p})) + \mathbf{A}(\mathcal{W}(\Delta \mathbf{p}))(\boldsymbol{\lambda} + \Delta \boldsymbol{\lambda}) - \mathbf{I}(\mathcal{W}(\mathbf{p})) \right\|^2$ **Solution** $\begin{vmatrix} \Delta \mathbf{p} \\ \Delta \boldsymbol{\lambda} \end{vmatrix} = -\mathbf{H}_{\mathbf{IC}}^{-1} \mathbf{J}_{\mathbf{IC}}^T \left[\mathbf{A}_0 + \mathbf{A} \boldsymbol{\lambda} - \mathbf{I}(\mathcal{W}(\mathbf{p})) \right]$ **Appearance** Jacobian **Jacobian Hessian Model Gradients** of the Warp $\mathbf{J}_{\mathbf{IC}} = \left((\nabla \mathbf{A}_0 + \nabla \mathbf{A} \boldsymbol{\lambda}) \, \frac{\partial \mathcal{W}(\mathbf{0})}{\partial \mathbf{p}}, \, \, \mathbf{A} \right) \qquad \mathbf{H}_{\mathbf{IC}} = \mathbf{J}_{\mathbf{IC}}^T \mathbf{J}_{\mathbf{IC}}$ Gauss Newton **Approximation Shape Parameters Appearance Parameters** $\mathcal{W}(\mathbf{s}, \mathbf{p}) \leftarrow \mathcal{W}(\mathbf{s}, \mathbf{p}) \circ \mathcal{W}(\mathbf{s}, \Delta \mathbf{p})^{-1}$ $\boldsymbol{\lambda} \leftarrow \boldsymbol{\lambda} + \Delta \boldsymbol{\lambda}$ **Parameters Update** 11 $\mathbf{p} \leftarrow \mathbf{p} - \Delta \mathbf{p}$

Simultaneous Cascaded Regression (SCR)

SCR - Learning Regression Matrices

Estimate average Jacobian under multiple initializations

$$\arg\min_{\mathbf{J}_{\mathbf{S}}^{k}} \sum_{i=1}^{N} \int p(\mathbf{r}') \left\| \mathbf{A}_{0} + \mathbf{A} \boldsymbol{\lambda}_{i}^{k} + \mathbf{J}_{\mathbf{S}}^{k} \Delta \mathbf{r}_{i}^{k} - \mathbf{I}_{i}(\mathcal{W}(\mathbf{p}_{i}^{k})) \right\|^{2} \partial \mathbf{r}'$$

Deviation from Ground Truth

 $\Delta \mathbf{r}_{i}^{k} = \begin{bmatrix} \mathbf{p}_{i}^{k} - \mathbf{p}_{*} \\ \boldsymbol{\lambda}_{i}^{k} - \boldsymbol{\lambda}_{*} \end{bmatrix}$ *k* - cascade level *i* - training image *j* - virtual sample

Discrete approximation

$$\arg\min_{\mathbf{J}_{\mathbf{S}}^{k}} \sum_{i=1}^{N} \sum_{j=1}^{M} \left\| \mathbf{A}_{0} + \mathbf{A} \boldsymbol{\lambda}_{ij}^{k} + \mathbf{J}_{\mathbf{S}}^{k} \Delta \mathbf{r}_{ij}^{k} - \mathbf{I}_{i} (\mathcal{W}(\mathbf{p}_{ij}^{k})) \right\|^{2}$$

Solution by Ridge Regression

$$\mathbf{J}_{\mathbf{S}}^{k} = \left(\Delta \mathbf{r} \Delta \mathbf{r}^{T} + \lambda_{1} \mathbf{I}_{d}\right)^{-1} \Delta \mathbf{r} \ \mathbf{E}^{T}$$

Advantage: do not require to invert a large data matrix

Update matrix

$$\mathbf{R}^{k} = \left((\mathbf{J}_{\mathbf{S}}^{k})^{T} \mathbf{J}_{\mathbf{S}}^{k} + \lambda_{2} \mathbf{I}_{d} \right)^{-1} (\mathbf{J}_{\mathbf{S}}^{k})^{T}$$

Level 1 Level 2 OOO Level K

Cascade update

$$\Delta \mathbf{r}^{k} = \mathbf{R}^{k} \left(\mathbf{I}(\mathcal{W}(\mathbf{p}^{k})) - \mathbf{A}_{0} - \mathbf{A}\boldsymbol{\lambda}^{k} \right)$$
$$\mathbf{r}^{k+1} = \mathbf{r}^{k} + \Delta \mathbf{r}^{k}$$

E: Data matrix w/ entries $\mathbf{E}_{ij} = \mathbf{I}_i(\mathcal{W}(\mathbf{p}_{ij}^k)) - \mathbf{A}_0 - \mathbf{A} \boldsymbol{\lambda}_{ij}^k$

Cascaded Regression Learning

Cost Function

Cost Function

Cost Function

Evaluation Results

Cumulative error distribution function (CDF)

Distance Error Metric (Inter-Ocular Normalized)

Inter-ocular normalized error

$$e_m(\mathbf{s}) = \frac{1}{v \ d_{\text{eyes}}} \sum_{i=1}^v \|\mathbf{s}_i - \mathbf{s}_i^*\|_{\mathbf{s}}$$

Method / AUC	LFPW	HELEN	LFW	300W
Initial Estimate	46.4	41.6	61.7	27.2
PO-FA	53.6	51.3	67.3	38.2
SFA	70.0	60.2	73.0	42.3
PO-IC	56.1	53.8	69.4	39.1
SIC	73.1	63.5	75.6	43.9
SCMS	56.9	50.7	70.7	40.9
ТМ	56.5	54.8	60.1	36.7
SDM	72.2	69.7	81.5	50.3
PO-CR	80.4	72.5	84.1	53.3
SCR	82.6	74.8	85.5	55.5

Area Under Curve (AUC)

Landmark Fitting Error Standard Deviation

LFPW Database

LFW Database

•<

HELEN Database

Qualitative Results (LFPW Database)

Qualitative Results (HELEN Database)

SCR Fitting Video

Simultaneous Cascaded Regression Pedro Martins, Jorge Batista ISR - Institute of Systems and Robotics University of Coimbra, Portugal

IEEE International Conference on Image Processing 2018 ICIP 2018

Conclusions

- Facial landmark localization w/ deformable face model
- Simultaneous Algorithm: Cascaded Regression Extension
 - Regression w/ both shape and appearance structure
 - Learning stage w/o inverting a large data matrix
- Evaluation Results (LFPW, HELEN, LFW, 300W datasets)
- Acknowledgements
 - Work supported by the Portuguese Science Foundation ('Fundação para a Ciência e Tecnologia FCT') through the grant SFRH/BDP/90200/2012.

Questions?

http://www.isr.uc.pt/~pedromartins pedromartins@isr.uc.pt

SCR Fitting Video

Simultaneous Cascaded Regression Pedro Martins, Jorge Batista ISR - Institute of Systems and Robotics University of Coimbra, Portugal

IEEE International Conference on Image Processing 2018 ICIP 2018