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•  The texture residual is defined as  

•  The goal is to find the optimal update,     , to minimize 

•  Leading to  

•  Training stage consists in estimating the Jacobian matrix, 
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Facial Expression Recognition Active Appearance Models 
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•  Generalized Procrustes Analysis 

•  Principal Components Analysis (PCA) 

•  Piecewise Affine Warp 

•  Remove correlations between shape and texture model parameters 

•  c is a vector of appearance controlling shape and texture 

1st 2nd 3rd 5th 

8th 10th Final Original 

•  Updating the appearance 
parameters, c, and pose 

•  A framework for automatic facial expression recognition combining Active Appearance Model (AAM) and Support Vector Machines (SVM) is proposed. 

•  Seven different expressions of several subjects, representing the neutral face and the facial emotions of happiness, sadness, surprise, anger, fear, and disgust were 
analyzed. 

•  The human face is discribed by the AAM model, projecting the appeance results into the hyperplane that maximizes class separability using a multiclass SVM that 
emphasize the different expression categories. 

Abstract 

Neutral 

Happy 

Sad 

Surprise Anger 

Fear 

Disgust 

Variance (%) Nº Combined 
EigenVectors 

95 17 

97 29 

98 42 

99 70 

99.5 97 

99.9 133 

One-Against-All Support Vector Machines 

Neut Happ Sad Surp Ang Fear Disg 
Neut 56.25 0 31.25 0 6.25 0 6.25 
Happ 0 100 0 0 0 0 0 
Sad 37.5 0 50 0 0 6.25 6.25 
Surp 0 0 0 75 6.25 18.75 0 
Ang 0 6.25 6.25 0 50 12.5 25 
Fear 12.5 0 6.25 37.5 6.25 31.25 6.25 
Disg 0 12.5 6.25 0 37.5 6.25 37.5 

•  Overall Recognition Rate = 57.14% (Dataset 95%) 

Neut Happ Surp Fear Disg 
Neut 100 0 0 0 0 
Happ 6.25 93.75 0 0 0 
Surp 0 6.25 81.25 12.5 0 

Fear 12.5 6.25 31.25 43.75 6.25 
Disg 0 12.5 6.25 0 81.25 

•  Facial expression SVM classification was achieved using a multiclass one-
against-all voting scheme with a RFB kernel,  

•  The kernel parameter,   ,and the misclassification penatly C were found by 
crossvalidation  

•  Feature data was normalized by mapping-it into the unitary hypersphere 
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•  Describe a face using the AAM model and retrieve the appearance, c 

•  Project each appearance vector into the hyperspace that maximize 
 class separability using a muticlass Support Vector Machines 

•  How much variance should be 
held on the AAM ? 

•  147 Images 

•  21 Individuals 

•  7 Different Facial 
Expressions 

•  640 x 480 Color Images 

AAM Fitting 
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Facial Expression Database 

•  Low Memory PCA 

Model Training 
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•  Model parameters are updated over texture residuals by  

•  AdaBoost initial estimate for the location of the face 
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•  Overall Recognition Rate = 80% (Dataset 99.5%) 

SVM 
Classification 

Build Several 
Models 

γ

Confusion Matrices – Leave-One-Out Cross-Validation 

Removing Correlated  
Facial Expressions 

•  Effect of confusion 
between the pairs 
of expressions  

•  Neutral/Sad  

•   Anger/Disgust 


