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Riemannian Geometry

� Tensors (S+) do not conform to Euclidean geometry, because the ten-
sor space is not a vector space. Instead, tensors lies on a Riemannian
manifold (differentiable manifold with a Riemannian metric). A manifold is
a topological space which is locally similar to an Euclidean space.

� The geodesic between X and Y is defined as the minimum length cur-
ve γ(t) connecting these points. The tangent space TxM is the vector
space attached to X, which contains the tangent vectors to all curves on
M passing through X. Given ,a tangent vector γ’(0) ∈ TxM there exists a

Background Modeling

� We propose a new method to background modeling using the tensor
concept. The combination of color and texture features can improve segmen-
tation performance. The structure tensor was used to convert the image into
a more information rich form and is defined as T = Kp ∗(vv’) where
v = [ Ix ; Iy ; Ir ; Ig ; Ib ] (Kp is a smoothing kernel).

� The tensor space does not form a vector space, thus linear statistical te-
chniques do not apply. Taking into account the differential geometrical proper-
ties of the Riemannian manifold where tensors lie , we propose a novel app-
roach for foreground detection on tensor field based on data modeling by
means of GMM directly on tensor domain.

� We introduced a K-means approximation of the EM algorithm based on an
Affine-Invariant metric. This metric has excellent theoretical properties but
essentially due to the space curvature the computational burden is high. We
propose a new K-means based on a new family of metrics, called Log-
Euclidean , in order to speed up the process. Based on a novel vector space
structure for tensors, the Log-Euclidean transforms computations on tensors
into Euclidean computations on vectors in the logarithms domain.

�From a practical point of view yield similar results, with an experimental
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M passing through X. Given ,a tangent vector γ’(0) ∈ TxM there exists a
unique geodesic with γ(0) = X , initial velocity γ’(0) and γ(1) = Y.

� The exponential map expx : TxM→M maps the tangent vector γ’(0) at X
= γ(0) to the point Y = γ(1) that is reached by the geodesic at time (t=ρ).
The logarithm map logx : M→TxM maps any point Y to the unique tan-
gent vector γ’(0) at X that is the initial velocity of the geodesic from X to Y.

Background Modeling
� We model the background with a GMM on tensor space. Based on the
definition of a Gaussian law on this space, we can define a GMM as follows
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� The clustering of data lying on the S+ is posed as a maximum likelihood
estimation problem. An exact EM algorithm is a costly procedure. In order to
speed up the process we propose a online K-means approximation of EM.
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� Euclidean: the distance between two points X,Y and the distance
gradient are given as follows

� Affine-Invariant: the geodesic defined by the initial point γ(0) = X and
the tangent vector γ’(0) is expressed as ( t=1→ exponential map )
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The respective logarithm map is defined as
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The geodesic distance between two points X ,Y induced by the Affine-
Invariant metric, derived from the Fisher Information matrix is given as

The distance gradient is the negative of the initial velocity γ’(0).

� Log-Euclidean: based on specific properties of the matrix exponenti-
al on tensors, it is possible to define a vector space structure on tensors.
Since under the matrix exponentiation, there is a one-to-one mapping
between the tensor space and the vector space of symmetric matrices,
one can transfer to tensors the standard algebraic operations with the
matrix exponential.

� Kmeans (Euclidean): the new mixture parameters combine the prior
information with the observed sample. The model parameters are updated
using an exponential decay scheme with learning rates (ρ) and (α).

� Kmeans (Affine-Invariant): the mean update equation presented previ-
ously can only be applied in the Euclidean case. To take into account the
Riemannian geometry of the manifold, we proposed a method to update the
mean, based on the concept of tensor interpolation. The point (Z) that is
reached by the geodesic at time (t=ρ) is estimated as
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�From a practical point of view yield similar results, with an experimental
computation time ratio of at least 2 and sometime more in favor of the Log-
Euclidean.
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matrix exponential.
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The respective logarithm map is defined as

Since the Log-Euclidean metrics corresponds to Euclidean metrics in the
logarithms domain, the interpolation between tensors is simplified as

[ ])log()()log()1(exp)( YX ttt +−=γ

The geodesic distance between two points X ,Y induced by the Log-
Euclidean metric, is also extremely simplified as follows

 ]))log(-)tr[(log(),( 2XYYX D =l ( ) )0(,2 γ&−=∇ YXDX l

The Log-Euclidean distance is much simpler than the Affine case where
matrix multiplications, square roots, inverses are used. However, the ex-
ponential and logarithm mappings are complicated in the Log-Euclide-
an case by the use of the matrix differentials.
Using spectral properties of symmetric matrices, one can compute an
explicit and efficiently closed-form expression for these differentials.

The tensor vector space with this metric is in fact isomorphic and
isometric with the corresponding Euclidean space of symmetric matrices.
Results obtained on logarithms are mapped back to the tensor domain
with the exponential. The geodesic is expressed as ( t=1 → exponential
map )

Results

Top����Bottom: Original ; GMM(v) ; KDE(v) ; GMM(T)-Euclidean ; GMM(T)-AffineInvariant ; GMM(T)-LogEuclidean

TPR = True positive ratio

FPR = False positive ratio

Theoretic analysis/experimental evaluations demonstrate the promise/effectiveness
of the proposed framework. It is stressed that no morphological operators were used.

� Kmeans (Log-Euclidean): in this case, a closed-form and simple ex-
pression for interpolation between tensors exists. The point Z between X and
Y that is reached by the geodesic γ(t) at time (t=ρ) is estimated as
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